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Total Hamiltonian:

H = HS

+ HI + HRI + HI2 + HRII

Components:

HS =
1
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ω0σz
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∑
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†
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∑
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gλσ+aλ + h.c . ,

HRII =
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ωλ,kb
†
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∑
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gλ,kaλb
†
λ,k + h.c .
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Model

Some further assumptions:

I All the reservoirs around each single mode of the first reservoir are identical

I The initial state of system + environment is a product state

ρ(0) = ρS(0)⊗ ρE

I The different reservoirs are also in a product state of thermal states

ρE = ρth(βI)⊗ ρth(βII) ρth(βi) ∝ e−HRiβi

I We model the spectral functions of the reservoirs with the phenomenological
model:

Ji(ω) = giω
si e−ω/ωc , i = RI,RII
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Methods

Redfield Master Equation

d

dt
ρS(t) = −i [HS, ρS(t)] +

(∫ t

0

dτα+(t, τ) [Vτ−tσ+ρS(t), σ−]

+

∫ t

0

dτα−(t, τ) [Vτ−tσ−ρS(t), σ+] + h.c .

)
,

where VtO = e iHStOe−iHSt represents the free evolution of the operator.
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Methods

Canonical form of the Master Equation

d

dt
ρS(t) = −i [H(t), ρS(t)]+

d2−1∑
k=1

γk(t)
(
Lk(t)ρS(t)L†k(t)− 1

2
{L†k(t)Lk(t), ρS(t)}

)
,

with

γ+(t) = JI(ω0)nI(ω0)e−JII(ω0)t + JI(ω0)nII(ω0)(1− e−JII(ω0)t) , L+ = σ+

γ−(t) = JI(ω0)(nI(ω0)+1)e−JII(ω0)t+JI(ω0)(nII(ω0)+1)(1−e−JII(ω0)t) , L− = σ−

where

ni(ω) =
1

e−βiω − 1
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Results - Prethermalization

This model exhibits an instance of prethermalization: relaxation of the open
system to a state that is not the true asymptotic state

When present, we can differentiate the following steps:

1. Relaxation of any initial condition to a thermal state determined by the
temperature of RI.

2. The system remains stationary in that state

3. Final relaxation towards a thermal state determined by the temperature of
RII.
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Results - Prethermalization

Animations!!
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Result - Prethermalization time

Trace distance between the prethermal state and the evolved state of the system
to study dependence of prethermalization time on other parameters.

T (ρS(t), ρthS (βI)) =
1

2
Tr

{√
(ρS(t)− ρthS (βI))2

}
(1)

I Exponential dependence with the coupling strength between environments.

I When the temperatures between reservoirs are closer, it becomes larger.

I Hotter RI yields longer prethermalization times, as well as colder RII.
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Results - Multiple environments
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Concluding Remarks

I New model to include environments that are not in direct contact with an
open quantum system

I We extended the usual methods used to study OQS to explore this more
complex scenario.

I This model allows to indirectly control the asymptotic state of a system by
modifying an environment that is not in direct contact with it

I Model reminiscent of the layered structure of quantum computers, with
different layers that are colder close to the qubits.
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